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We suggest a modified factorization scheme within a supersymmetric framework 
which affords a consistent treatment of a wide class of Schr6dinger potentials. A 
consequence of this is the possibility of deriving a boson-fermion Hamiltonian 
with linear interaction. 

There has been growing interest in the search for supersymmetry in 
quantum mechanical problems in the past few years [see Lahiri et al. (1990) 
for a recent survey on the subject]. In most cases, supersymmetry has been 
formulated for a class of potentials which are shape-invariant (Genden- 
shtein, 1983) or constructed (Levai, 1989; Chuan, 1990) to be so. As is well 
known, the essence of supersymmetry rests in the possibility of factorizing 
(Stahlhofen and Bleuler, 1989) the Schr6dinger Hamiltonian and thereby 
inducing a governing (Cervaro, 1991) superpotential. In effect this means 
solving a nonlinear equation which belongs to the Riccati class. 

In the present study we introduce a modified (Leach, 1985) version 
of the so-called factorization scheme in the framework of supersymmetric 
quantum mechanics. As shall be seen, we are able to account for a whole 
sequence of potentials ranging from a polynomial to other varieties, includ- 
ing the singular ones (Casahorran and Nam, 1991). An interesting conse- 
quence of our scenario is the possibility of touching upon supersymmetric 
Hamiltonians possessing (Stedman, 1985 ; Jarvis and Stedman, 1984) boson- 
fermion interaction terms. 
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To embark upon our scheme, we consider the time-independent Schr6d- 
inger equation in one dimension (in units h = 2m= 1): 

L ~ =  [ - d ~ 2 +  ( V -  Eo)] g t = 0  (1) 

under the influence of  a potential V= V(x) for E =  E0. Left multiplying the 
operator equation (1) by some funct ionf(x) ,  we observe that we can always 
express 

provided we restrict 

fl = a f - f '  (3a) 

V-Eo  = (a _ f , / f  )2_ (a - f ' / f  )' (3b) 

This puts us in a position to establish contact with the supersymmetric 
theory. We note that the superpotential W(x) also satisfies a relation similar 
to (3b): 

V-Eo  = W 2-  W' (4) 

This suggests an identification 

W = a - f ' / f  (5) 

which must hold good for any arbitrary f 
Now replacing a by the superpotential itself, we deduce a modified 

superpotential, 

Wmod = W - f  ' I f  (6) 

As a result the N =  2 supersymmetric charges assume the form 

Q = (d/dx + W - f ' / f ) c  + (7a) 

Qt= ( -d /dx  + W -  f ' / f  )c (7b) 

where c and e + are the fermionic annihilation and creation operators, respec- 
tively. The charges Q and Q~ as usual satisfy the N = 2 supersymmetric 
algebra: 

Q 2 = Q +2 = 0 (8a) 

Hs={Q, Q+}, [Hs, Q] =[Hs,  Q+I=0 (8b) 



Supersymmetric Quantum Mechanics 771 

For Wmoa we can express the ground-state wavefunction ~bo in terms of 
the ~'0 corresponding to W: 

q~0 = e x p [ - f  Wmo d dy]=fVto  (9) 

The above formalism can be applied to a wide class of potentials. For 
example, if we choose f =  const along with W= x, we see immediately that 
equation (6) reduces to the case of the harmonic oscillator. 

Consider the less trivial possibility f ' / f = ~ x  2 [which implies f =  
exp(Ax3/3), where ~ is a parameter] for the same choice of W, namely 
W= x. We read off from (7) 

Q = [b - z (b + b+)2]c + 
(lO) 

Qt = [b + _ ~ (b + b+)2]c 

where b and b + are the bosonic annihilation and creation operators, that is, 
[b, b +] = 1. 

The set (10) generates the supersymmetric Hamiltonian 

Hs(int) = c+c + b+b - 4)~c + ea + 22a - 2a 3 + )~2a4 (I 1) 

where a = b + b  + and B = b - ) ~  2. In terms of B, Hs(int)=c+c[B, B +] + B + B .  
But B is not a bosonic operator: [B, B +] = 1 - 4 ~ t #  1. 

It is noteworthy that Hs(int) has picked up a nontrivial interaction 
between a boson and a fermion variable and remarkably coincides with the 
form previously proposed by Jarvis and Stedman (1984). Treating ~ as a 
coupling parameter, it is transparent from (11) that cubic anharmonicity is 
present at the same order (~.) as the fermion-boson coupling. As emphasized 
by Stedman (1985), this is essential, since at zeroth order in ~ these terms 
mix under Q=  (b-/]z/2)r +. One can show in perturbation theory that to 
second order in 2. the ground state is unshifted. Jarvis and Stedman (1984) 
consider applications to supersymmetric Jahn-Teller systems. More recently, 
thermodynamic implications of Hs(int) have been studied (Steeb et al., 1989). 

Using the representations of c and c +, one can express equation (11) as 
a 2 x 2 diagonal matrix with entries 

d 2 1 l- +x T -Z Z(x3Tx)+4Z2x 4 H~=(int) =~  

We notice that in the partner Hamiltonians, cubic as well as quartic anhar- 
monic terms are present to O(~) and O(,~2), respectively. The Schr6dinger 
potential corresponding to this system is of the polynomial form V ( x ) =  
ax  + bx  2 + cx  3 + dx  4, where a, b, c, and d are constants. Extensive literature 
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exists on the study of  such a potential, see Kaushal (1991) for a nice treat- 
ment. In this way other variants of H,(int) may be proposed by suitably 
modifying the functions f and W. 

We now turn to some singular superpotentials. Assuming that singular- 
ities exist at the points x = +c, we choose f ( x )  = x 2 - c along with W ( x )  = x 3. 
We find 

2 x  
W m o d  = X 3 -  (12) 

X 2 -  C 

yielding 

4c 2 -  2 
V +  = x 6 - 7 x  2 4c 2 (13a) 

X 2 - -  C 

4c 2 + 2 8x 2 
V - = x 6 - x  2 - - §  4c 2 (13b) 

x ~ -  c (x 2 -  c) 2 

The Schr6dinger potential is V(x )  = x 6 - 7x 2 -  (4c 2 -  2) / (x  2 -  c) and 
Eo = 4c. Roy and Varshni (1991) have recently studied the pair (V+, V_) in 
the context of exploring solvability in quasiexact systems as defined by 
Turbiner and Ushveridze (1987). Roy and Varshni (1991) found the two 
exact solutions for V ( x )  to be 

Eo = -2v/2, ~ 0 ~ ( x 2 +  1/~/2) exp(-x4/4)  (14a) 

E2 = 2,,/2, r  2 -  1/~/2) exp(-x4/4)  (14b) 

where (0) and (2) denote the order of  the levels. 
A particular case of  Wmod above occurs when c = 0. This was considered 

by Cooper and Freedman (1983) and gives V + = x 6 - 5 x  2, V-=x6+x2+2/ 
x 2. Here also the Schr6dinger potential V ( x )  = x 6 - 5x 2 belongs to the family 
(Turbiner and Ushveridze, 1987) of quasiexactly solvable potentials V ( x )  = 
X6__(8j+ 3)X 2 " ' for ) = a. Note that V_ is singular when x = 0. 

Finally, we remark on the nonpolynomial potential (Filho and Ricotta, 
1989) 

Xx 2 
V = x 2 +  - z = Z ( g )  (15) 

1 + g x  2' 

which has some applicability in quantum optics. This V can be accommod- 
ated in our modified factorization scheme by setting 

2 g x  
W = x  (16) 

1 + g x  2 
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and choosing 

f ( x )  = p ( x  2 - )~o) ( x  2 - Z , )  " �9 �9 ( x  2 - Z,) (17) 

F rom (16) and (17) we find 

" 1 
2 g x  .1_ 2x ~0 x2 _ 17, (18) Wm~ = "~ 1 -t- g x  2 .= -- " 

See Roy e t  al.  (1991) for a detailed analysis of  the potential V in (15). 
To conclude, we have proposed a modified factorization scheme within 

a supersymmetric framework which encompasses a wide variety of  poten- 
tials. We have explored some forms, but we believe that our model can be 
successfully employed to deal with more complicated (Beckers and Debergh, 
1991 ; deLaney and Nieto, 1990) types of  potentials. We shall take this up 
in more detail elsewhere. A word about the function f introduced in our 
treatment:  Since, according to equation (9), f is directly related to the 
ground-state wave function, the presence of a singularity in it will inevitably 
lead to problems with the normalizability and square integrability of  ~b0. 
This is overcome if f is taken to be, say, a polynomial or an exponential 
function, as has been done in the cases we have considered. 
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