Modified Factorization Method and Supersymmetric Quantum Mechanics

B. Bagchi, ¹ K. Samanta, ¹ A. Lahiri, ² and P. K. Roy³

Received May 7, 1992

We suggest a modified factorization scheme within a supersymmetric framework which affords a consistent treatment of a wide class of Schrödinger potentials. A consequence of this is the possibility of deriving a boson-fermion Hamiltonian with linear interaction.

There has been growing interest in the search for supersymmetry in quantum mechanical problems in the past few years [see Lahiri *et al.* (1990) for a recent survey on the subject]. In most cases, supersymmetry has been formulated for a class of potentials which are shape-invariant (Gendenshtein, 1983) or constructed (Levai, 1989; Chuan, 1990) to be so. As is well known, the essence of supersymmetry rests in the possibility of factorizing (Stahlhofen and Bleuler, 1989) the Schrödinger Hamiltonian and thereby inducing a governing (Cervaro, 1991) superpotential. In effect this means solving a nonlinear equation which belongs to the Riccati class.

In the present study we introduce a modified (Leach, 1985) version of the so-called factorization scheme in the framework of supersymmetric quantum mechanics. As shall be seen, we are able to account for a whole sequence of potentials ranging from a polynomial to other varieties, including the singular ones (Casahorran and Nam, 1991). An interesting consequence of our scenario is the possibility of touching upon supersymmetric Hamiltonians possessing (Stedman, 1985 ; Jarvis and Stedman, 1984) bosonfermion interaction terms.

¹Department of Applied Mathematics, Vidyasagar University, Midnapore 721102, West Bengal, India.

²Department of Physics, Surendranath College, Calcutta 700009, West Bengal, India.

³Department of Physics, Haldia Government College, Haldia 721657, West Bengal, India.

To embark upon our scheme, we consider the time-independent Schrödinger equation in one dimension (in units $\hbar = 2m = 1$):

$$
L\psi = \left[-\frac{d^2}{dx^2} + (V - E_0) \right] \psi = 0
$$
 (1)

under the influence of a potential $V=V(x)$ for $E=E_0$. Left multiplying the operator equation (1) by some function $f(x)$, we observe that we can always express

$$
fL = \left(-\frac{d}{dx} + a\right) \left(f\frac{d}{dx} + \beta\right) \tag{2}
$$

provided we restrict

$$
\beta = \alpha f - f' \tag{3a}
$$

$$
V - E_0 = (a - f'/f)^2 - (a - f'/f)'
$$
 (3b)

This puts us in a position to establish contact with the supersymmetric theory. We note that the superpotential $W(x)$ also satisfies a relation similar to (3b):

$$
V - E_0 = W^2 - W'
$$
\n⁽⁴⁾

This suggests an identification

$$
W = \alpha - f'/f \tag{5}
$$

which must hold good for any arbitrary f .

Now replacing α by the superpotential itself, we deduce a modified superpotential,

$$
W_{\text{mod}} = W - f'/f \tag{6}
$$

As a result the $N=2$ supersymmetric charges assume the form

$$
Q = \left(\frac{d}{dx} + W - f'/f\right)c^+\tag{7a}
$$

$$
Q^{\dagger} = (-d/dx + W - f'/f)c \tag{7b}
$$

where c and c^+ are the fermionic annihilation and creation operators, respectively. The charges Q and Q^{\dagger} as usual satisfy the $N=2$ supersymmetric algebra:

$$
Q^2 = Q^{+2} = 0 \tag{8a}
$$

$$
H_s = \{Q, Q^+\}, \qquad [H_s, Q] = [H_s, Q^+] = 0 \tag{8b}
$$

Supersymmetric Quantum Mechanics 771

For W_{mod} we can express the ground-state wavefunction ϕ_0 in terms of the ψ_0 corresponding to W:

$$
\phi_0 = \exp\left[-\int W_{\text{mod}} \, dy\right] = f\psi_0 \tag{9}
$$

The above formalism can be applied to a wide class of potentials. For example, if we choose $f=$ const along with $W=x$, we see immediately that equation (6) reduces to the case of the harmonic oscillator.

Consider the less trivial possibility $f'/f = \lambda x^2$ [which implies $f =$ $\exp(\lambda x^3/3)$, where λ is a parameter] for the same choice of W, namely $W = x$. We read off from (7)

$$
Q = [b - \lambda (b + b^{+})^{2}]c^{+}
$$

\n
$$
Q^{\dagger} = [b^{+} - \lambda (b + b^{+})^{2}]c
$$
\n(10)

where b and b^+ are the bosonic annihilation and creation operators, that is, $[b, b^+] = 1.$

The set (10) generates the supersymmetric Hamiltonian

$$
Hs(int) = c+c + b+b - 4\lambda c+ca + 2\lambda a - \lambda a3 + \lambda2a4
$$
 (11)

where $a = b + b^{+}$ and $B = b - \lambda a^{2}$. In terms of B, $H_{s}(\text{int}) = c^{+}c[B, B^{+}] + B^{+}B$. But B is not a bosonic operator: $[B, B^+] = 1 - 4\lambda a \ne 1$.

It is noteworthy that $H_s(int)$ has picked up a nontrivial interaction between a boson and a fermion variable and remarkably coincides with the form previously proposed by Jarvis and Stedman (1984). Treating λ as a coupling parameter, it is transparent from (11) that cubic anharmonicity is present at the same order (λ) as the fermion-boson coupling. As emphasized by Stedman (1985), this is essential, since at zeroth order in λ these terms mix under $Q = (b - \lambda a^2)c^+$. One can show in perturbation theory that to second order in λ the ground state is unshifted. Jarvis and Stedman (1984) consider applications to supersymmetric Jahn-Teller systems. More recently, thermodynamic implications of H_s(int) have been studied (Steeb *et al.,* 1989).

Using the representations of c and c^+ , one can express equation (11) as a 2×2 diagonal matrix with entries

$$
H_{\pm}^{s}(\text{int}) = \frac{1}{2} \left(-\frac{d^{2}}{dx^{2}} + x^{2} \right) \pm \frac{1}{2} - 2\sqrt{2} \lambda (x^{3} \pm x) + 4\lambda^{2} x^{4}
$$

We notice that in the partner Hamiltonians, cubic as well as quartic anharmonic terms are present to $O(\lambda)$ and $O(\lambda^2)$, respectively. The Schrödinger potential corresponding to this system is of the polynomial form $V(x)$ = $ax + bx^2 + cx^3 + dx^4$, where a, b, c, and d are constants. Extensive literature exists on the study of such a potential, see Kaushal (1991) for a nice treatment. In this way other variants of $H_s(int)$ may be proposed by suitably modifying the functions f and W .

We now turn to some singular superpotentials. Assuming that singularities exist at the points $x = \pm c$, we choose $f(x) = x^2 - c$ along with $W(x) = x^3$. We find

$$
W_{\text{mod}} = x^3 - \frac{2x}{x^2 - c}
$$
 (12)

yielding

$$
V_{+} = x^{6} - 7x^{2} - \frac{4c^{2} - 2}{x^{2} - c} - 4c^{2}
$$
 (13a)

$$
V_{-} = x^{6} - x^{2} - \frac{4c^{2} + 2}{x^{2} - c} + \frac{8x^{2}}{(x^{2} - c)^{2}} - 4c^{2}
$$
 (13b)

The Schrödinger potential is $V(x) = x^6 - 7x^2 - (4c^2 - 2)/(x^2 - c)$ and E_0 = 4c. Roy and Varshni (1991) have recently studied the pair (V_+ , V_-) in the context of exploring solvability in quasiexact systems as defined by Turbiner and Ushveridze (1987). Roy and Varshni (1991) found the two exact solutions for $V(x)$ to be

$$
E_0 = -2\sqrt{2}, \qquad \psi_0 \sim (x^2 + 1/\sqrt{2}) \exp(-x^4/4) \tag{14a}
$$

$$
E_2 = 2\sqrt{2}, \qquad \psi_2 \sim (x^2 - 1/\sqrt{2}) \exp(-x^4/4) \tag{14b}
$$

where (0) and (2) denote the order of the levels.

A particular case of W_{mod} above occurs when $c = 0$. This was considered by Cooper and Freedman (1983) and gives $V_+ = x^6 - 5x^2$, $V_- = x^6 + x^2 + 2/$ x^2 . Here also the Schrödinger potential $V(x) = x^6 - 5x^2$ belongs to the family (Turbiner and Ushveridze, 1987) of quasiexactly solvable potentials $V(x)$ = $x^6 - (8_i + 3)x^2$ for $i = \frac{1}{4}$. Note that V_{-} is singular when $x = 0$.

Finally, we remark on the nonpolynomial potential (Filho and Ricotta, 1989)

$$
V = x2 + \frac{\lambda x^{2}}{1 + gx^{2}}, \qquad \lambda = \lambda (g)
$$
 (15)

which has some applicability in quantum optics. This V can be accommodated in our modified factorization scheme by setting

$$
W = x - \frac{2gx}{1 + gx^2} \tag{16}
$$

Supersymmetric Quantum Mechanics 773

and choosing

$$
f(x) = \mu(x^2 - \lambda_0)(x^2 - \lambda_1) \cdot \cdot \cdot (x^2 - \lambda_n)
$$
 (17)

From (16) and (17) we find

$$
W_{\text{mod}} = x - \frac{2gx}{1 + gx^2} + 2x \sum_{i=0}^{n} \frac{1}{x^2 - a_i}
$$
 (18)

See Roy *et al.* (1991) for a detailed analysis of the potential V in (15).

To conclude, we have proposed a modified factorization scheme within a supersymmetric framework which encompasses a wide variety of potentials. We have explored some forms, but we believe that our model can be successfully employed to deal with more complicated (Beckers and Debergh, 1991 ; deLaney and Nieto, 1990) types of potentials. We shall take this up in more detail elsewhere. A word about the function f introduced in our treatment: Since, according to equation (9) , f is directly related to the ground-state wave function, the presence of a singularity in it will inevitably lead to problems with the normalizability and square integrability of ϕ_0 . This is overcome if f is taken to be, say, a polynomial or an exponential function, as has been done in the cases we have considered.

ACKNOWLEDGMENTS

One of us (B.B.) thanks Prof. N. D. Sengupta for discussions and clarification of a number of points. This work was supported by the Department of Science and Technology (DST), New Delhi. K.S. thanks the DST for the award of a fellowship.

REFERENCES

Beckers, J., and Debergh, N. (1991). Zeitschrift für Physik C, 51, 519.

- Casahorran, J., and Nam, S. (1991). *International Journal of Modern Physics A, 6,* 2729.
- Cervaro, J. M. (1991). *Physics Letters,* 153A, 1.

Chuan, C. X. (1990). *Journal of Physics A,* 23, L659.

Cooper, F., and Freedman, B. (1983). *Annals of Physics,* 146, 262.

DeLaney, D., and Nieto, M. M. (1990). *Physics Letters,* 247B, 301.

Filho, E. D., and Ricotta, R. M. (1989), *Modern Physics Letters* A, 4, 2283.

Gendenshtein, L. E. (1983). *JETP Letters,* 38, 356.

Jarvis, P. D., and Stedman, G. E. (1984). *Journal of Physics A,* 17, 757.

Kaushal, R. S. (1991). *Modern Physics Letters A,* 6, 383.

Lahiri, A., Roy, P. K., and Bagchi, B. (1990). *International Journal of Modern Physics A, 5,* 1383.

Leach, P. G. (1985). *Physica,* 17D, 331.

Levai, G. (1989). *Journal of Physics A, 22,* 689.

Roy, P., and Varshni, Y. P. (1991). *Modern Physics Letters* A, 6, 1257.

Roy, B., Roy, P., and Roychoudhury, R. (1991). *Fortschritte der Physik,* 39, 211.

- Stahlhofen, A., and Bleuler, K. (1989). *Nuovo Cimento,* 104B, 447.
- Stedman, G. E. (1985). *European Journal of Physics,* 6, 225.
- Steeb, W,, *et al.* (1989). *Helvetica Physica Acta,* 61, 979.
- Turbiner, A. V., and Ushveridze, A. G. (1987). *Physics Letters A,* 126, 181.